ON THE PULLBACK EQUATION Bernard DACOROGNA

EPFL - Switzerland

1) Bandyopadhyay S. and Dacorogna B., On the pullback equation $\varphi^{*}(g)=f$, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), 1717-1741.
2) Bandyopadhyay S., Dacorogna B. and Kneuss O., The pullback equation for degenerate forms, Disc. Cont. Dyn. Syst. Series A, 27 (2010), 657-691.
3) Dacorogna B. and Kneuss O., Divisibility in Grassmann algebra, to appear in Linear and Multilinear Algebra.

I) Introduction

We discuss the existence of a diffeomorphism

$$
\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

such that

$$
\varphi^{*}(g)=f
$$

where, $1 \leq k \leq n$,

$$
f, g: \mathbb{R}^{n} \rightarrow \Lambda^{k}\left(\mathbb{R}^{n}\right) \approx \mathbb{R}^{\binom{n}{k}}
$$

I) Introduction

We discuss the existence of a diffeomorphism

$$
\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

such that

$$
\varphi^{*}(g)=f
$$

where, $1 \leq k \leq n$,

$$
f, g: \mathbb{R}^{n} \rightarrow \Lambda^{k}\left(\mathbb{R}^{n}\right) \approx \mathbb{R}^{\binom{n}{k}}
$$

$f, g \neq 0$, are closed differential forms (i.e. $d f=d g=0$),
$2 \leq k \leq n$

$$
g=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} g_{i_{1} \cdots i_{k}}(x) d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}}
$$

and similarly for f.

I) Introduction

We discuss the existence of a diffeomorphism

$$
\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

such that

$$
\begin{equation*}
\varphi^{*}(g)=f \tag{1}
\end{equation*}
$$

where, $1 \leq k \leq n$,

$$
f, g: \mathbb{R}^{n} \rightarrow \Lambda^{k}\left(\mathbb{R}^{n}\right) \approx \mathbb{R}^{\binom{n}{k}}
$$

$f, g \neq 0$, are closed differential forms (i.e. $d f=d g=0$), $2 \leq k \leq n$

$$
g=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} g_{i_{1} \cdots i_{k}}(x) d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}}
$$

and similarly for f. The meaning of (1) is that

$$
\begin{aligned}
& \sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} g_{i_{1} \cdots i_{k}}(\varphi(x)) d \varphi^{i_{1}} \wedge \cdots \wedge d \varphi^{i_{k}} \\
& =\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} f_{i_{1} \cdots i_{k}}(x) d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}} .
\end{aligned}
$$

$$
k=0
$$

$$
f, g: \mathbb{R}^{n} \rightarrow \Lambda^{0}\left(\mathbb{R}^{n}\right) \approx \mathbb{R}^{\binom{n}{0}}=\mathbb{R}
$$

$$
k=0
$$

$$
\begin{gathered}
f, g: \mathbb{R}^{n} \rightarrow \Lambda^{0}\left(\mathbb{R}^{n}\right) \approx \mathbb{R}^{\binom{n}{0}}=\mathbb{R} \\
d f=0 \Leftrightarrow \operatorname{grad} f=0
\end{gathered}
$$

$$
k=0
$$

$$
\begin{gathered}
f, g: \mathbb{R}^{n} \rightarrow \Lambda^{0}\left(\mathbb{R}^{n}\right) \approx \mathbb{R}^{\binom{n}{0}}=\mathbb{R} \\
d f=0 \Leftrightarrow \operatorname{grad} f=0 \\
\varphi^{*}(g)=f \quad \Leftrightarrow \quad g(\varphi(x))=f(x) .
\end{gathered}
$$

$$
\begin{gathered}
k=1 f, g: \mathbb{R}^{n} \rightarrow \Lambda^{1}\left(\mathbb{R}^{n}\right) \approx \mathbb{R}^{\binom{n}{1}}=\mathbb{R}^{n} \\
g=\sum_{i=1}^{n} g_{i}(x) d x^{i}
\end{gathered}
$$

$$
\begin{gathered}
k=1 f, g: \mathbb{R}^{n} \rightarrow \Lambda^{1}\left(\mathbb{R}^{n}\right) \approx \mathbb{R}\binom{n}{1}=\mathbb{R}^{n} \\
g=\sum_{i=1}^{n} g_{i}(x) d x^{i} \\
d g=0 \Leftrightarrow \operatorname{curl} g=0
\end{gathered}
$$

$$
\begin{gathered}
k=1 f, g: \mathbb{R}^{n} \rightarrow \Lambda^{1}\left(\mathbb{R}^{n}\right) \approx \mathbb{R}^{\binom{n}{1}}=\mathbb{R}^{n} \\
g=\sum_{i=1}^{n} g_{i}(x) d x^{i} \\
d g=0 \Leftrightarrow \operatorname{curl} g=0
\end{gathered}
$$

The equation $\varphi^{*}(g)=f$ becomes

$$
\sum_{p=1}^{n} g_{p}(\varphi(x)) d \varphi^{p}=\sum_{i=1}^{n} f_{i}(x) d x^{i} .
$$

$k=1 f, g: \mathbb{R}^{n} \rightarrow \Lambda^{1}\left(\mathbb{R}^{n}\right) \approx \mathbb{R}\binom{n}{1}=\mathbb{R}^{n}$

$$
\begin{aligned}
g & =\sum_{i=1}^{n} g_{i}(x) d x^{i} \\
d g & =0 \Leftrightarrow \operatorname{curl} g=0
\end{aligned}
$$

The equation $\varphi^{*}(g)=f$ becomes

$$
\sum_{p=1}^{n} g_{p}(\varphi(x)) d \varphi^{p}=\sum_{i=1}^{n} f_{i}(x) d x^{i}
$$

Writing

$$
d \varphi^{p}=\sum_{i=1}^{n} \frac{\partial \varphi^{p}}{\partial x^{i}} d x^{i}
$$

$$
\begin{gathered}
k=1 f, g: \mathbb{R}^{n} \rightarrow \Lambda^{1}\left(\mathbb{R}^{n}\right) \approx \mathbb{R}^{\binom{n}{1}}=\mathbb{R}^{n} \\
g=\sum_{i=1}^{n} g_{i}(x) d x^{i} \\
d g=0 \Leftrightarrow \operatorname{curl} g=0
\end{gathered}
$$

The equation $\varphi^{*}(g)=f$ becomes

$$
\begin{equation*}
\sum_{p=1}^{n} g_{p}(\varphi(x)) d \varphi^{p}=\sum_{i=1}^{n} f_{i}(x) d x^{i} . \tag{2}
\end{equation*}
$$

Writing

$$
d \varphi^{p}=\sum_{i=1}^{n} \frac{\partial \varphi^{p}}{\partial x^{i}} d x^{i}
$$

we get that (2) is equivalent to

$$
\sum_{p=1}^{n} g_{p}(\varphi(x)) \frac{\partial \varphi^{p}}{\partial x^{i}}=f_{i} \quad i=1, \cdots, n
$$

which is a linear (in the derivatives) first order system of $\binom{n}{1}=n$ pdes.

$$
\begin{gathered}
k=2 f, g: \mathbb{R}^{n} \rightarrow \wedge^{2}\left(\mathbb{R}^{n}\right) \approx \mathbb{R}^{\binom{n}{2}}=\mathbb{R}^{\frac{n(n-1)}{2}} \\
g=\sum_{1 \leq i<j \leq n} g_{i j}(x) d x^{i} \wedge d x^{j}
\end{gathered}
$$

$$
\begin{aligned}
k=2 f, g: \mathbb{R}^{n} & \rightarrow \Lambda^{2}\left(\mathbb{R}^{n}\right) \approx \mathbb{R}^{\binom{n}{2}}=\mathbb{R}^{\frac{n(n-1)}{2}} \\
g & =\sum_{1 \leq i<j \leq n} g_{i j}(x) d x^{i} \wedge d x^{j} \\
d g=0 & \Leftrightarrow \frac{\partial g_{i j}}{\partial x^{k}}-\frac{\partial g_{i k}}{\partial x^{j}}+\frac{\partial g_{j k}}{\partial x^{i}}=0
\end{aligned}
$$

$$
\begin{aligned}
k=2 f, g: \mathbb{R}^{n} & \rightarrow \Lambda^{2}\left(\mathbb{R}^{n}\right) \approx \mathbb{R}^{\binom{n}{2}}=\mathbb{R}^{\frac{n(n-1)}{2}} \\
g & =\sum_{1 \leq i<j \leq n} g_{i j}(x) d x^{i} \wedge d x^{j} \\
d g=0 & \Leftrightarrow \frac{\partial g_{i j}}{\partial x^{k}}-\frac{\partial g_{i k}}{\partial x^{j}}+\frac{\partial g_{j k}}{\partial x^{i}}=0
\end{aligned}
$$

The equation $\varphi^{*}(g)=f$ becomes

$$
\sum_{1 \leq p<q \leq n} g_{p q}(\varphi(x)) d \varphi^{p} \wedge d \varphi^{q}=\sum_{1 \leq i<j \leq n} f_{i j}(x) d x^{i} \wedge d x^{j} .
$$

$$
\begin{aligned}
k=2 f, g: \mathbb{R}^{n} & \left.\rightarrow \Lambda^{2}\left(\mathbb{R}^{n}\right) \approx \mathbb{R}^{n} \begin{array}{l}
n \\
2
\end{array}\right)=\mathbb{R}^{\frac{n(n-1)}{2}} \\
g & =\sum_{1 \leq i<j \leq n} g_{i j}(x) d x^{i} \wedge d x^{j} \\
d g=0 & \Leftrightarrow \frac{\partial g_{i j}}{\partial x^{k}}-\frac{\partial g_{i k}}{\partial x^{j}}+\frac{\partial g_{j k}}{\partial x^{i}}=0
\end{aligned}
$$

The equation $\varphi^{*}(g)=f$ becomes
$\sum_{1 \leq p<q \leq n} g_{p q}(\varphi(x)) d \varphi^{p} \wedge d \varphi^{q}=\sum_{1 \leq i<j \leq n} f_{i j}(x) d x^{i} \wedge d x^{j}$.
Writing, as before,

$$
d \varphi^{p}=\sum_{i=1}^{n} \frac{\partial \varphi^{p}}{\partial x^{i}} d x^{i}
$$

$k=2 f, g: \mathbb{R}^{n} \rightarrow \Lambda^{2}\left(\mathbb{R}^{n}\right) \approx \mathbb{R}^{\binom{n}{2}}=\mathbb{R}^{\frac{n(n-1)}{2}}$

$$
\begin{gathered}
g=\sum_{1 \leq i<j \leq n} g_{i j}(x) d x^{i} \wedge d x^{j} \\
d g=0 \Leftrightarrow \frac{\partial g_{i j}}{\partial x^{k}}-\frac{\partial g_{i k}}{\partial x^{j}}+\frac{\partial g_{j k}}{\partial x^{i}}=0
\end{gathered}
$$

The equation $\varphi^{*}(g)=f$ becomes

$$
\begin{equation*}
\sum_{1 \leq p<q \leq n} g_{p q}(\varphi(x)) d \varphi^{p} \wedge d \varphi^{q}=\sum_{1 \leq i<j \leq n} f_{i j}(x) d x^{i} \wedge d x^{j} \tag{3}
\end{equation*}
$$

Writing, as before,

$$
d \varphi^{p}=\sum_{i=1}^{n} \frac{\partial \varphi^{p}}{\partial x^{i}} d x^{i}
$$

we get that (3) is equivalent, for every $1 \leq i<j \leq n$, to

$$
\sum_{1 \leq p<q \leq n} g_{p q}(\varphi(x))\left(\frac{\partial \varphi^{p}}{\partial x^{i}} \frac{\partial \varphi^{q}}{\partial x^{j}}-\frac{\partial \varphi^{p}}{\partial x^{j}} \frac{\partial \varphi^{q}}{\partial x^{i}}\right)=f_{i j}
$$

which is a non-linear homogeneous of degree 2 (in the derivatives) first order system of $\binom{n}{2}$ pdes.
$k f, g: \mathbb{R}^{n} \rightarrow \Lambda^{k}\left(\mathbb{R}^{n}\right) \approx \mathbb{R}^{\binom{n}{k}}$.

The equation $\varphi^{*}(g)=f$ is then a non-linear homogeneous of degree k (in the derivatives) first order system of $\binom{n}{k}$ pdes.
$k f, g: \mathbb{R}^{n} \rightarrow \Lambda^{k}\left(\mathbb{R}^{n}\right) \approx \mathbb{R}^{\binom{n}{k}}$.

The equation $\varphi^{*}(g)=f$ is then a non-linear homogeneous of degree k (in the derivatives) first order system of $\binom{n}{k}$ pdes.
\vdots
$k=n f, g: \mathbb{R}^{n} \rightarrow \Lambda^{n}\left(\mathbb{R}^{n}\right) \approx \mathbb{R}\binom{n}{n}=\mathbb{R}$.

Here we always have

$$
d g=0
$$

$k f, g: \mathbb{R}^{n} \rightarrow \Lambda^{k}\left(\mathbb{R}^{n}\right) \approx \mathbb{R}^{\binom{n}{k} .}$

The equation $\varphi^{*}(g)=f$ is then a non-linear homogeneous of degree k (in the derivatives) first order system of $\binom{n}{k}$ pdes.
\vdots
$k=n f, g: \mathbb{R}^{n} \rightarrow \Lambda^{n}\left(\mathbb{R}^{n}\right) \approx \mathbb{R}\binom{n}{n}=\mathbb{R}$.

Here we always have

$$
d g=0
$$

The equation $\varphi^{*}(g)=f$ becomes

$$
g(\varphi(x)) \operatorname{det} \nabla \varphi(x)=f(x)
$$

$k f, g: \mathbb{R}^{n} \rightarrow \Lambda^{k}\left(\mathbb{R}^{n}\right) \approx \mathbb{R}^{\binom{n}{k} .}$

The equation $\varphi^{*}(g)=f$ is then a non-linear homogeneous of degree k (in the derivatives) first order system of $\binom{n}{k}$ pdes.
\vdots

$$
k=n f, g: \mathbb{R}^{n} \rightarrow \Lambda^{n}\left(\mathbb{R}^{n}\right) \approx \mathbb{R}\binom{n}{n}=\mathbb{R}
$$

Here we always have

$$
d g=0
$$

The equation $\varphi^{*}(g)=f$ becomes

$$
g(\varphi(x)) \operatorname{det} \nabla \varphi(x)=f(x)
$$

it is then a non-linear homogeneous of degree n (in the derivatives) first order pde, i.e.

$$
\binom{n}{n}=1 .
$$

Questions

1) Local existence
2) Global existence
3) Regularity
4) Dirichlet (or Cauchy) data

Plan of the talk

I) Introduction
II) Historical background ($k=2$ and $k=n$)

Plan of the talk

I) Introduction
II) Historical background ($k=2$ and $k=n$)
III) Darboux theorem with optimal regularity $(k=2)$

Plan of the talk

I) Introduction
II) Historical background ($k=2$ and $k=n$)
III) Darboux theorem with optimal regularity $(k=2)$
IV) Global Darboux type theorem $(k=2)$

Plan of the talk

I) Introduction
II) Historical background ($k=2$ and $k=n$)
III) Darboux theorem with optimal regularity $(k=2)$
IV) Global Darboux type theorem $(k=2)$

V) Darboux type theorem in the degenerate cases $(k=2)$

Plan of the talk

I) Introduction
II) Historical background ($k=2$ and $k=n$)
III) Darboux theorem with optimal regularity $(k=2)$
IV) Global Darboux type theorem $(k=2)$
V) Darboux type theorem in the degenerate cases ($k=2$)
$\mathrm{VI})$ The case of $(n-1)$-forms

Plan of the talk

I) Introduction
II) Historical background ($k=2$ and $k=n$)
III) Darboux theorem with optimal regularity $(k=2)$
IV) Global Darboux type theorem $(k=2)$
V) Darboux type theorem in the degenerate cases $(k=2)$
VI) The case of $(n-1)$-forms
VII) The case of k-forms when $3 \leq k \leq n-2$

Plan of the talk

I) Introduction
II) Historical background ($k=2$ and $k=n$)
III) Darboux theorem with optimal regularity $(k=2)$
IV) Global Darboux type theorem $(k=2)$
V) Darboux type theorem in the degenerate cases ($k=2$)
VI) The case of $(n-1)$-forms
VII) The case of k-forms when $3 \leq k \leq n-2$
VIII) Ideas of the proof
II) Historical background ($k=2$ and $k=n$)

$$
k=2 \text { and } n \text { even }
$$

II) Historical background ($k=2$ and $k=n$)

$k=2$ and n even

Theorem (Darboux, 1882) Let $n=2 m$ and $x_{0} \in \mathbb{R}^{n}$. Let ω_{m} be the standard symplectic form

$$
g=\omega_{m}=\sum_{i=1}^{m} d x^{2 i-1} \wedge d x^{2 i}
$$

(when $n=4$, then $g=d x^{1} \wedge d x^{2}+d x^{3} \wedge d x^{4}$).
II) Historical background ($k=2$ and $k=n$)

$k=2$ and n even

Theorem (Darboux, 1882) Let $n=2 m$ and $x_{0} \in \mathbb{R}^{n}$. Let ω_{m} be the standard symplectic form

$$
g=\omega_{m}=\sum_{i=1}^{m} d x^{2 i-1} \wedge d x^{2 i}
$$

(when $n=4$, then $g=d x^{1} \wedge d x^{2}+d x^{3} \wedge d x^{4}$).

Let f be a closed (i.e. $d f=d \omega_{m}=0$) 2 -form such that

$$
\operatorname{rank} f\left(x_{0}\right)=\operatorname{rank} \omega_{m}=n .
$$

II) Historical background ($k=2$ and $k=n$)

$k=2$ and n even

Theorem (Darboux, 1882) Let $n=2 m$ and $x_{0} \in \mathbb{R}^{n}$. Let ω_{m} be the standard symplectic form

$$
g=\omega_{m}=\sum_{i=1}^{m} d x^{2 i-1} \wedge d x^{2 i}
$$

(when $n=4$, then $g=d x^{1} \wedge d x^{2}+d x^{3} \wedge d x^{4}$).
Let f be a closed (i.e. $d f=d \omega_{m}=0$) 2 -form such that

$$
\operatorname{rank} f\left(x_{0}\right)=\operatorname{rank} \omega_{m}=n
$$

Then there exist a neighbourhood V of x_{0} and $\varphi \in$ $\operatorname{Diff}\left(V ; \mathbb{R}^{n}\right)$ such that

$$
\varphi^{*}\left(\omega_{m}\right)=f \text { in } V \quad \text { and } \quad \varphi\left(x_{0}\right)=x_{0} .
$$

$k=n$

Moser (1965), Banyaga (1974), Dacorogna (1981), Reimann (1972), Tartar (1978) and Zehnder (1976).

$$
k=n
$$

Moser (1965), Banyaga (1974), Dacorogna (1981), Reimann (1972), Tartar (1978) and Zehnder (1976).

Theorem (Dacorogna-Moser, 1990) Let $r \geq 0$ and $0<\alpha<1$. Let $\Omega \subset \mathbb{R}^{n}$ be a smooth bounded connected open set. Let $f, g>0$ in $\bar{\Omega}$. Then the two following statements are equivalent.

$k=n$

Moser (1965), Banyaga (1974), Dacorogna (1981), Reimann (1972), Tartar (1978) and Zehnder (1976).

Theorem (Dacorogna-Moser, 1990) Let $r \geq 0$ and $0<\alpha<1$. Let $\Omega \subset \mathbb{R}^{n}$ be a smooth bounded connected open set. Let $f, g>0$ in $\bar{\Omega}$. Then the two following statements are equivalent.
(i) $f, g \in C^{r, \alpha}(\bar{\Omega})$ and

$$
\int_{\Omega} f(x) d x=\int_{\Omega} g(x) d x
$$

$k=n$

Moser (1965), Banyaga (1974), Dacorogna (1981), Reimann (1972), Tartar (1978) and Zehnder (1976).

Theorem (Dacorogna-Moser, 1990) Let $r \geq 0$ and $0<\alpha<1$. Let $\Omega \subset \mathbb{R}^{n}$ be a smooth bounded connected open set. Let $f, g>0$ in $\bar{\Omega}$. Then the two following statements are equivalent.
(i) $f, g \in C^{r, \alpha}(\bar{\Omega})$ and

$$
\int_{\Omega} f(x) d x=\int_{\Omega} g(x) d x .
$$

(ii) There exists $\varphi \in \operatorname{Diff}^{r+1, \alpha}(\bar{\Omega})$ satisfying

$$
\varphi^{*}(g)=f \text { in } \Omega \quad \text { and } \quad \varphi=i d \text { on } \partial \Omega
$$

meaning that

$$
\left\{\begin{array}{cl}
g(\varphi(x)) \operatorname{det} \nabla \varphi(x)=f(x) & x \in \Omega \\
\varphi(x)=x & x \in \partial \Omega .
\end{array}\right.
$$

Posterior contributions: Burago-Kleiner (1998), Cupini-Dacorogna-Kneuss (2009), Mc Mullen (1998), Rivière-Ye (1996) and Ye (1994).

Posterior contributions: Burago-Kleiner (1998), Cupini-Dacorogna-Kneuss (2009), Mc Mullen (1998), Rivière-Ye (1996) and Ye (1994).

1) Burago-Kleiner and Mc Mullen provided an example of $f \in C^{0}$ such that there exist no $\varphi \in$ Diff 1 satisfying

$$
\operatorname{det} \nabla \varphi(x)=f(x) .
$$

Posterior contributions: Burago-Kleiner (1998), Cupini-Dacorogna-Kneuss (2009), Mc Mullen (1998), Rivière-Ye (1996) and Ye (1994).

1) Burago-Kleiner and Mc Mullen provided an example of $f \in C^{0}$ such that there exist no $\varphi \in$ Diff 1 satisfying

$$
\operatorname{det} \nabla \varphi(x)=f(x) .
$$

2) Cupini-Dacorogna-Kneuss have studied the degenerate case where f is allowed to change sign (of course, in this case, the map cannot be a diffeomorphism).
III) Darboux theorem with optimal regularity ($k=$ 2)

$k=2$ and n even

Theorem (Bandyopadhyay-Dacorogna, 2009) Let $n=$ $2 m$ and $x_{0} \in \mathbb{R}^{n}$. Let ω_{m} be the standard symplectic form

$$
g=\omega_{m}=\sum_{i=1}^{m} d x^{2 i-1} \wedge d x^{2 i}
$$

(when $n=4$, then $g=d x^{1} \wedge d x^{2}+d x^{3} \wedge d x^{4}$).
III) Darboux theorem with optimal regularity ($k=$ 2)

Theorem (Bandyopadhyay-Dacorogna, 2009) Let $n=$ $2 m$ and $x_{0} \in \mathbb{R}^{n}$. Let ω_{m} be the standard symplectic form

$$
g=\omega_{m}=\sum_{i=1}^{m} d x^{2 i-1} \wedge d x^{2 i}
$$

(when $n=4$, then $g=d x^{1} \wedge d x^{2}+d x^{3} \wedge d x^{4}$).

Let $r \geq 0$ and $0<\alpha<1$. Let f be a 2 -form. Then the two following statements are equivalent.
(i) The 2 -form f is closed (i.e. $d f=d \omega_{m}=0$), $f \in C^{r, \alpha}$ and verifies

$$
\operatorname{rank} f\left(x_{0}\right)=\operatorname{rank} \omega_{m}=n .
$$

III) Darboux theorem with optimal regularity ($k=$ 2)

Theorem (Bandyopadhyay-Dacorogna, 2009) Let $n=$ $2 m$ and $x_{0} \in \mathbb{R}^{n}$. Let ω_{m} be the standard symplectic form

$$
g=\omega_{m}=\sum_{i=1}^{m} d x^{2 i-1} \wedge d x^{2 i}
$$

(when $n=4$, then $g=d x^{1} \wedge d x^{2}+d x^{3} \wedge d x^{4}$). Let $r \geq 0$ and $0<\alpha<1$. Let f be a 2 -form. Then the two following statements are equivalent.
(i) The 2-form f is closed (i.e. $d f=d \omega_{m}=0$), $f \in C^{r, \alpha}$ and verifies

$$
\operatorname{rank} f\left(x_{0}\right)=\operatorname{rank} \omega_{m}=n
$$

(ii) There exist a neighbourhood V of x_{0} and $\varphi \in$ Diff ${ }^{r+1, \alpha}\left(V ; \mathbb{R}^{n}\right)$ such that

$$
\varphi^{*}\left(\omega_{m}\right)=f \quad \text { in } V \quad \text { and } \quad \varphi\left(x_{0}\right)=x_{0}
$$

IV) Global Darboux theorem

Theorem (Bandyopadhyay-Dacorogna, 2009) Let $n=$ $2 m$ and $\Omega \subset \mathbb{R}^{n}$ be a smooth bounded convex open set (and ν denotes the outside unit normal).

IV) Global Darboux theorem

Theorem (Bandyopadhyay-Dacorogna, 2009) Let $n=$ $2 m$ and $\Omega \subset \mathbb{R}^{n}$ be a smooth bounded convex open set (and ν denotes the outside unit normal). Let $r \geq 1$ and $0<\alpha<\beta<1$. Let $f, g \in C^{r, \alpha}\left(\bar{\Omega} ; \Lambda^{2}\right)$

IV) Global Darboux theorem

Theorem (Bandyopadhyay-Dacorogna, 2009) Let $n=$ $2 m$ and $\Omega \subset \mathbb{R}^{n}$ be a smooth bounded convex open set (and ν denotes the outside unit normal). Let $r \geq 1$ and $0<\alpha<\beta<1$. Let $f, g \in C^{r, \alpha}\left(\bar{\Omega} ; \Lambda^{2}\right) \cap$ $C^{r+1, \beta}\left(\partial \Omega ; \Lambda^{2}\right)$ with

IV) Global Darboux theorem

Theorem (Bandyopadhyay-Dacorogna, 2009) Let $n=$ $2 m$ and $\Omega \subset \mathbb{R}^{n}$ be a smooth bounded convex open set (and ν denotes the outside unit normal). Let $r \geq 1$ and $0<\alpha<\beta<1$. Let $f, g \in C^{r, \alpha}\left(\bar{\Omega} ; \Lambda^{2}\right) \cap$ $C^{r+1, \beta}\left(\partial \Omega ; \Lambda^{2}\right)$ with

$$
d g=d f=0
$$

IV) Global Darboux theorem

Theorem (Bandyopadhyay-Dacorogna, 2009) Let $n=$ $2 m$ and $\Omega \subset \mathbb{R}^{n}$ be a smooth bounded convex open set (and ν denotes the outside unit normal). Let $r \geq 1$ and $0<\alpha<\beta<1$. Let $f, g \in C^{r, \alpha}\left(\bar{\Omega} ; \Lambda^{2}\right) \cap$ $C^{r+1, \beta}\left(\partial \Omega ; \Lambda^{2}\right)$ with

$$
d g=d f=0
$$

$$
\nu \wedge g=\nu \wedge f \quad \text { on } \partial \Omega .
$$

IV) Global Darboux theorem

Theorem (Bandyopadhyay-Dacorogna, 2009) Let $n=$ $2 m$ and $\Omega \subset \mathbb{R}^{n}$ be a smooth bounded convex open set (and ν denotes the outside unit normal). Let $r \geq 1$ and $0<\alpha<\beta<1$. Let $f, g \in C^{r, \alpha}\left(\bar{\Omega} ; \wedge^{2}\right) \cap$ $C^{r+1, \beta}\left(\partial \Omega ; \Lambda^{2}\right)$ with

$$
d g=d f=0
$$

$$
\nu \wedge g=\nu \wedge f \quad \text { on } \partial \Omega .
$$

$\operatorname{rank}[t g+(1-t) f]=n \quad$ in Ω and for every $t \in[0,1]$

IV) Global Darboux theorem

Theorem (Bandyopadhyay-Dacorogna, 2009) Let $n=$ $2 m$ and $\Omega \subset \mathbb{R}^{n}$ be a smooth bounded convex open set (and ν denotes the outside unit normal). Let $r \geq 1$ and $0<\alpha<\beta<1$. Let $f, g \in C^{r, \alpha}\left(\bar{\Omega} ; \Lambda^{2}\right) \cap$ $C^{r+1, \beta}\left(\partial \Omega ; \Lambda^{2}\right)$ with

$$
d g=d f=0
$$

$$
\nu \wedge g=\nu \wedge f \quad \text { on } \partial \Omega .
$$

$\operatorname{rank}[t g+(1-t) f]=n \quad$ in Ω and for every $t \in[0,1]$

Then there exists $\varphi \in \operatorname{Diff}^{r+1, \alpha}(\bar{\Omega})$ satisfying

$$
\varphi^{*}(g)=f \text { in } \Omega \quad \text { and } \quad \varphi=i d \text { on } \partial \Omega
$$

Remarks (i) If $d g=0$ then necessarily

$$
d f=0 .
$$

Remarks (i) If $d g=0$ then necessarily

$$
d f=0 .
$$

In fact we always have

$$
\operatorname{rank}[d g]=\operatorname{rank}[d f] .
$$

Remarks (i) If $d g=0$ then necessarily

$$
d f=0 .
$$

In fact we always have

$$
\operatorname{rank}[d g]=\operatorname{rank}[d f] .
$$

(ii) If we want $\varphi=i d$ on $\partial \Omega$, then necessarily

$$
\nu \wedge g=\nu \wedge f \quad \text { on } \partial \Omega .
$$

Remarks (i) If $d g=0$ then necessarily

$$
d f=0 .
$$

In fact we always have

$$
\operatorname{rank}[d g]=\operatorname{rank}[d f] .
$$

(ii) If we want $\varphi=i d$ on $\partial \Omega$, then necessarily

$$
\nu \wedge g=\nu \wedge f \quad \text { on } \partial \Omega .
$$

(iii) The condition
rank $[t g+(1-t) f]=n \quad$ in Ω and for every $t \in[0,1]$
can be weakened, replacing the linear homotopy by a nonlinear one.
(iv) If Ω is contractible, the theorem is valid.
(iv) If Ω is contractible, the theorem is valid.

If however Ω is only connected then another necessary condition comes into play, namely

$$
\int_{\Omega}\langle f-g ; \psi\rangle d x=0 \quad \text { for every } \psi \in \mathcal{D}_{2}(\Omega)
$$

(iv) If Ω is contractible, the theorem is valid.

If however Ω is only connected then another necessary condition comes into play, namely

$$
\int_{\Omega}\langle f-g ; \psi\rangle d x=0 \quad \text { for every } \psi \in \mathcal{D}_{2}(\Omega)
$$

where $\mathcal{D}_{2}(\Omega)$ is the set of 2 -harmonic field namely

$$
\mathcal{D}_{2}(\Omega)=\left\{\begin{array}{c}
\psi \in C^{1}: d \psi=0, \delta \psi=0 \\
\text { and } \nu \wedge \psi=0 \text { on } \partial \Omega
\end{array}\right\} .
$$

(iv) If Ω is contractible, the theorem is valid.

If however Ω is only connected then another necessary condition comes into play, namely

$$
\int_{\Omega}\langle f-g ; \psi\rangle d x=0 \quad \text { for every } \psi \in \mathcal{D}_{2}(\Omega)
$$

where $\mathcal{D}_{2}(\Omega)$ is the set of 2 -harmonic field namely

$$
\mathcal{D}_{2}(\Omega)=\left\{\begin{array}{c}
\psi \in C^{1}: d \psi=0, \delta \psi=0 \\
\text { and } \nu \wedge \psi=0 \text { on } \partial \Omega
\end{array}\right\} .
$$

If Ω is convex (or more generally star shaped, contractible...) then

$$
\mathcal{D}_{2}(\Omega)=\{0\} .
$$

(iv) If Ω is contractible, the theorem is valid. If however Ω is only connected then another necessary condition comes into play, namely

$$
\int_{\Omega}\langle f-g ; \psi\rangle d x=0 \quad \text { for every } \psi \in \mathcal{D}_{2}(\Omega)
$$

where $\mathcal{D}_{2}(\Omega)$ is the set of 2 -harmonic field namely

$$
\mathcal{D}_{2}(\Omega)=\left\{\begin{array}{c}
\psi \in C^{1}: d \psi=0, \delta \psi=0 \\
\text { and } \nu \wedge \psi=0 \text { on } \partial \Omega
\end{array}\right\} .
$$

If Ω is convex (or more generally star shaped, contractible...) then

$$
\mathcal{D}_{2}(\Omega)=\{0\} .
$$

The dimension of this space is the Betti number

$$
\operatorname{dim} \mathcal{D}_{2}(\Omega)=B_{n-2} .
$$

V) Darboux type theorem in the degenerate cases

Theorem (Bandyopadhyay-Dacorogna-Kneuss, 2010)

Let $2 \leq 2 l<n$ and $x_{0} \in \mathbb{R}^{n}$. Let ω_{l} be the standard symplectic form of rank $\omega_{l}=2 l$

$$
g=\omega_{l}=\sum_{i=1}^{l} d x^{2 i-1} \wedge d x^{2 i}
$$

(when $2 l=2<n=3$, then $g=d x^{1} \wedge d x^{2}$).
V) Darboux type theorem in the degenerate cases

Theorem (Bandyopadhyay-Dacorogna-Kneuss, 2010)

 Let $2 \leq 2 l<n$ and $x_{0} \in \mathbb{R}^{n}$. Let ω_{l} be the standard symplectic form of rank $\omega_{l}=2 l$$$
g=\omega_{l}=\sum_{i=1}^{l} d x^{2 i-1} \wedge d x^{2 i}
$$

(when $2 l=2<n=3$, then $g=d x^{1} \wedge d x^{2}$).

Let $r \geq 1$ and $0<\alpha<1$. Let $f \in C^{r, \alpha}$ be a closed
(i.e. $d f=d \omega_{l}=0$) 2 -form such that
rank $f=\operatorname{rank} \omega_{l}=2 l$ in a neigbourhood of x_{0}.

V) Darboux type theorem in the degenerate cases

Theorem (Bandyopadhyay-Dacorogna-Kneuss, 2010)

Let $2 \leq 2 l<n$ and $x_{0} \in \mathbb{R}^{n}$. Let ω_{l} be the standard symplectic form of rank $\omega_{l}=2 l$

$$
g=\omega_{l}=\sum_{i=1}^{l} d x^{2 i-1} \wedge d x^{2 i}
$$

(when $2 l=2<n=3$, then $g=d x^{1} \wedge d x^{2}$).

Let $r \geq 1$ and $0<\alpha<1$. Let $f \in C^{r, \alpha}$ be a closed
(i.e. $d f=d \omega_{l}=0$) 2 -form such that
rank $f=\operatorname{rank} \omega_{l}=2 l$ in a neigbourhood of x_{0}.
Then there exist a neighbourhood V of x_{0} and $\varphi \in$ $\operatorname{Diff}^{r, \alpha}\left(V ; \mathbb{R}^{n}\right)$ such that

$$
\varphi^{*}\left(\omega_{l}\right)=f \text { in } V \quad \text { and } \quad \varphi\left(x_{0}\right)=x_{0} .
$$

VI) The case of $(n-1)$-forms

Theorem (Bandyopadhyay-Dacorogna-Kneuss, 2010)

Let $r \geq 1$ be integers, $0<\alpha<1$ and $x_{0} \in \mathbb{R}^{n}$. Let $f, g \in C^{r, \alpha}$ closed ($n-1$) -forms satisfying

$$
\operatorname{rank} f\left(x_{0}\right)=\operatorname{rank} g\left(x_{0}\right)=n-1
$$

or equivalently

$$
f\left(x_{0}\right) \neq 0 \quad \text { and } \quad g\left(x_{0}\right) \neq 0
$$

VI) The case of $(n-1)$-forms

Theorem (Bandyopadhyay-Dacorogna-Kneuss, 2010)

Let $r \geq 1$ be integers, $0<\alpha<1$ and $x_{0} \in \mathbb{R}^{n}$. Let $f, g \in C^{r, \alpha}$ closed ($n-1$)-forms satisfying

$$
f\left(x_{0}\right) \neq 0 \quad \text { and } \quad g\left(x_{0}\right) \neq 0 .
$$

Then there exists $\varphi \in \operatorname{Diff}^{r}, \alpha$ such that, in a neighbourhood of x_{0},

$$
\varphi^{*}(g)=f \quad \text { and } \quad \varphi\left(x_{0}\right)=x_{0} .
$$

$\mathbf{V I})$ The case of $(n-1)$-forms

Theorem (Bandyopadhyay-Dacorogna-Kneuss, 2010)

 Let $r \geq 1$ be integers, $0<\alpha<1$ and $x_{0} \in \mathbb{R}^{n}$. Let $f, g \in C^{r, \alpha}$ closed ($n-1$)-forms satisfying$$
f\left(x_{0}\right) \neq 0 \quad \text { and } \quad g\left(x_{0}\right) \neq 0
$$

Then there exists $\varphi \in \operatorname{Diff}^{r, \alpha}$ such that, in a neighbourhood of x_{0},

$$
\varphi^{*}(g)=f \quad \text { and } \quad \varphi\left(x_{0}\right)=x_{0}
$$

Corollary (B-D-K, 2010) Let $r \geq 1$ be an integer and $0<\alpha<1$ and $x_{0} \in \mathbb{R}^{n}$. Let $f \in C^{r, \alpha}$ vector field satisfying, in a neighbourhood of x_{0},

$$
f\left(x_{0}\right) \neq 0 \quad \text { and } \quad \operatorname{div} f=0
$$

VI) The case of ($n-1$)-forms

Theorem (Bandyopadhyay-Dacorogna-Kneuss, 2010) Let $r \geq 1$ be integers, $0<\alpha<1$ and $x_{0} \in \mathbb{R}^{n}$. Let $f, g \in C^{r, \alpha}$ closed ($n-1$)-forms satisfying

$$
f\left(x_{0}\right) \neq 0 \quad \text { and } \quad g\left(x_{0}\right) \neq 0 .
$$

Then there exists $\varphi \in$ Diff $^{r, \alpha}$ such that, in a neighbourhood of x_{0},

$$
\varphi^{*}(g)=f \quad \text { and } \quad \varphi\left(x_{0}\right)=x_{0} .
$$

Corollary (B-D-K, 2010+Barbarosie) Let $r \geq 1$ be an integer and $0<\alpha<1$ and $x_{0} \in \mathbb{R}^{n}$. Let $f \in C^{r, \alpha}$ vector field satisfying, in a neighbourhood of x_{0},

$$
f\left(x_{0}\right) \neq 0 \quad \text { and } \quad \operatorname{div} f=0 .
$$

Then there exists $\varphi \in$ Diff $^{r}, \alpha$ such that, in a neighbourhood of x_{0},

$$
f=*\left(\nabla \varphi^{1} \wedge \cdots \wedge \nabla \varphi^{n-1}\right) \quad \text { and } \quad \varphi\left(x_{0}\right)=x_{0} .
$$

VII) The case of k-forms when $3 \leq k \leq n-2$

The problem is more difficult and there the rank is not the only invariant and we have results only for special forms.
VII) The case of k-forms when $3 \leq k \leq n-2$

The problem is more difficult and there the rank is not the only invariant and we have results only for special forms.

For example those forms that are product of 1 and 2 forms of the type

$$
f=f_{1} \wedge \cdots \wedge f_{l} \wedge a_{1} \wedge \cdots \wedge a_{m}
$$

where

$$
f_{1}, \cdots, f_{l}
$$

are closed 2-forms and

$$
a_{1}, \cdots, a_{m}
$$

are closed 1-forms.
VII) The case of k-forms when $3 \leq k \leq n-2$

The problem is more difficult and there the rank is not the only invariant and we have results only for special forms.

For example those forms that are product of 1 and 2 forms of the type

$$
f=f_{1} \wedge \cdots \wedge f_{l} \wedge a_{1} \wedge \cdots \wedge a_{m}
$$

where

$$
f_{1}, \cdots, f_{l}
$$

are closed 2-forms and

$$
a_{1}, \cdots, a_{m}
$$

are closed 1-forms.

Note that f is a $k=(2 l+m)-$ form.

VIII) Ideas of the proof

I) The flow method (Moser 1965)

VIII) Ideas of the proof

I) The flow method (Moser 1965)

Look for a solution of $\varphi^{*}(g)=f$ as the flow associated to an appropriate vector field u_{t}, namely

VIII) Ideas of the proof

I) The flow method (Moser 1965)

Look for a solution of $\varphi^{*}(g)=f$ as the flow associated to an appropriate vector field u_{t}, namely

$$
\left\{\begin{aligned}
\frac{d}{d t} \varphi_{t}(x)=u_{t} & \left(\varphi_{t}(x)\right), t \in[0,1] \\
\varphi_{0} & (x)=x .
\end{aligned}\right.
$$

VIII) Ideas of the proof

I) The flow method (Moser 1965)

Look for a solution of $\varphi^{*}(g)=f$ as the flow associated to an appropriate vector field u_{t}, namely

$$
\left\{\begin{aligned}
\frac{d}{d t} \varphi_{t}(x)=u_{t} & \left(\varphi_{t}(x)\right), t \in[0,1] \\
\varphi_{0} & (x)=x .
\end{aligned}\right.
$$

The solution at time $t=1$, namely φ_{1} satisfies

$$
\varphi_{1}^{*}(g)=f .
$$

VIII) Ideas of the proof

I) The flow method (Moser 1965)

Look for a solution of $\varphi^{*}(g)=f$ as the flow associated to an appropriate vector field u_{t}, namely

$$
\left\{\begin{aligned}
\frac{d}{d t} \varphi_{t}(x)=u_{t} & \left(\varphi_{t}(x)\right), t \in[0,1] \\
\varphi_{0} & (x)=x .
\end{aligned}\right.
$$

The solution at time $t=1$, namely φ_{1} satisfies

$$
\varphi_{1}^{*}(g)=f .
$$

Write

$$
f_{t}=t g+(1-t) f
$$

VIII) Ideas of the proof

I) The flow method (Moser 1965)

Look for a solution of $\varphi^{*}(g)=f$ as the flow associated to an appropriate vector field u_{t}, namely

$$
\left\{\begin{aligned}
\frac{d}{d t} \varphi_{t}(x)=u_{t} & \left(\varphi_{t}(x)\right), t \in[0,1] \\
\varphi_{0} & (x)=x .
\end{aligned}\right.
$$

The solution at time $t=1$, namely φ_{1} satisfies

$$
\varphi_{1}^{*}(g)=f .
$$

Write

$$
f_{t}=t g+(1-t) f
$$

and solve (by Poincaré lemma) the underdetermined problem

$$
d \omega=f-g
$$

VIII) Ideas of the proof

I) The flow method (Moser 1965)

Look for a solution of $\varphi^{*}(g)=f$ as the flow associated to an appropriate vector field u_{t}, namely

$$
\left\{\begin{aligned}
\frac{d}{d t} \varphi_{t}(x)=u_{t} & \left(\varphi_{t}(x)\right), t \in[0,1] \\
\varphi_{0} & (x)=x .
\end{aligned}\right.
$$

The solution at time $t=1$, namely φ_{1} satisfies

$$
\varphi_{1}^{*}(g)=f .
$$

Write

$$
f_{t}=t g+(1-t) f
$$

and solve (by Poincaré lemma) the underdetermined problem

$$
d \omega=f-g
$$

and recover u_{t} through the overdetermined algebraic relation

$$
\left.u_{t}\right\lrcorner f_{t}=\omega .
$$

II) The fixed point method

Look for a solution of $\varphi^{*}(g)=f$ as a perturbation of the identity, namely
II) The fixed point method

Look for a solution of $\varphi^{*}(g)=f$ as a perturbation of the identity, namely

$$
\varphi(x)=x+u(x) .
$$

II) The fixed point method

Look for a solution of $\varphi^{*}(g)=f$ as a perturbation of the identity, namely

$$
\varphi(x)=x+u(x) .
$$

Apply Banach fixed point theorem under a smallness assumption on

$$
\|f-g\|_{C^{0, \alpha}} .
$$

II) The fixed point method

Look for a solution of $\varphi^{*}(g)=f$ as a perturbation of the identity, namely

$$
\varphi(x)=x+u(x) .
$$

Apply Banach fixed point theorem under a smallness assumption on

$$
\|f-g\|_{C^{0, \alpha}} .
$$

Then iterate in order to remove the smallness assumption.
II) The fixed point method

Look for a solution of $\varphi^{*}(g)=f$ as a perturbation of the identity, namely

$$
\varphi(x)=x+u(x) .
$$

Apply Banach fixed point theorem under a smallness assumption on

$$
\|f-g\|_{C^{0, \alpha}} .
$$

Then iterate in order to remove the smallness assumption.

This requires very fine properties of Hölder continuous functions.

