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We discuss the existence of a diffeomorphism
v : R" — R"
such that
" (9) =1 (1)
where, 1 < k < n,

(%)
f,9:R" — AR (R™) ~ R\K
, are closed differential forms (i.e. df = dg = 0),

g = > Giq--iy, (T) dx L A -+ A da'®
1<i1<-<ip<n

and similarly for f. The meaning of (1) is that

Z 9iq-ig, (gp (aj)) dgpzl Ao A dgpzk
1< < <. <n

- Z fiyowip, () dz'L A -« - A dz'
1<ip<-<ip<n



fagiRn%Ao(R”)zR(?)l) — R



fagiRn%Ao(R”)zR(?)/) — R

df =0 < grad f =0



(c)
fog:R* - AD(R") ~ R\O/) =R
df =0 & gradf =0

e (g)=f & gle)=/[f(x).
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-f,g:R”HAl(R”)%R( ) _ g
n .
g = Zgi(m)da;z
1=1

dg=0 & curlg=0

The equation ¢* (g) = f becomes

> gp (¢ (@) de? =3 fi(x)da’. (2)
p=1 1=1

Writing
= ) ——dx
7 Z oz’
1=1
we get that (2) is equivalent to

0P ,
axZ:fZ ’I,:].,'“,’TL

> gp (¢ ()
p=1

which is a linear (in the derivatives) first order system of

S
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-fagiRn%Az(R”)%R(ZJ) —R

g = Z 9ij () dz' A dz’
1<i<j<n

9gij  Ogir, . 99k -
Oxk  OxJ Ox?
The equation ¢* (g) = f becomes

>o gpg(p (@) dePAde? = > fij (x) da* Ada?

dg=0 &

1<p<g<n 1<i<j<n
(3)
Writing, as before,
n 9P
d P — —.de
v Z ox?
1=1
we get that (3) is equivalent, for every 1 < i < j < n,
to
S oo @) (50005~ o) =1
9pg \P \ X . - — . . = ij
1<p<q<n ox* OxJ  OxJ Ox*

which is a non-linear homogeneous of degree 2 (in the
derivatives) first order system of . pdes.
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& f,g:R* — AF(RD) zR(z).

The equation ¢* (g) = f is then a non-linear homoge-
neous of degree k (in the derivatives) first order system

of . pdes.

-f,g:R”HA”(R”)%R(Z) = R.

Here we always have
dg = 0.
The equation ¢* (g) = f becomes

g(p(z))det Vo (z) = f(x)

it is then a non-linear homogeneous of degree n (in the

derivatives) first order pde , i.e. -



Questions

1) Local existence

2) Global existence

3) Regularity

4) Dirichlet (or Cauchy) data
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Theorem (Darboux, 1882) Let n = 2m and xg € R™.
Let wy, be the standard symplectic form

m . .
g=wm=)_ dz?* 1t A dx®
1=1
(when n = 4, then g = da’ A da? + da® A dz?).
Let f be a closed (i.e. df = dwm = 0) 2—form such
that
rank f (zg) = rankwy, = n.

Then there exist a neighbourhood V' of g and ¢ €
Diff(V; R™) such that

© (wm)=f inV and ¢ (zg) = x¢.
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Moser (1965), Banyaga (1974), Dacorogna (1981), Reimann
(1972), Tartar (1978) and Zehnder (1976).

Theorem (Dacorogna-Moser, 1990) Let » > 0 and
0 < a< 1l Let Q C R™ be a smooth bounded con-
nected open set. Let f,g > 0 in Q. Then the two fol-
lowing statements are equivalent.

(i) f,g e CT™ (ﬁ) and

/Qf(a:)dx:/ﬂg(x)dx.

(ii) There exists ¢ € Diff" 1 (ﬁ) satisfying
0 (g)=finQ and ¢ =1id on 9N
meaning that

{g(w(w))detvw(w):f(x) v e
p(r) =1z x € 0N).
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Posterior contributions: Burago-Kleiner (1998), Cupini-
Dacorogna-Kneuss (2009), Mc Mullen (1998), Riviére-Ye
(1996) and Ye (1994).

1) Burago-Kleiner and Mc Mullen provided an example
of f € CY such that there exist no ¢ € Diff! satisfying

detVo(z) = f (o).

2) Cupini-Dacorogna-Kneuss have studied the degenerate
case where f is allowed to change sign (of course, in this
case, the map cannot be a diffeomorphism).
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I11) Darboux theorem with optimal regularity (£ =
2)

Theorem (Bandyopadhyay-Dacorogna, 2009) Let n =
2m and xzg € R™. Let wy, be the standard symplectic
form

m .
g = wm = Z dz?* 1 A dx®
=1
(when n = 4, then g = dzl A dx? + dz3 A dCC4). Let

r>0and 0 < a < 1. Let f be a 2—form. Then the
two following statements are equivalent.

(i) The 2—form f is closed (i.e. df = dwm = 0),
f e C™® and verifies

rank f (xg) = rankwm, = n.

(ii) There exist a neighbourhood V of zg and ¢ €
Diff" 1 (V; R™) such that

@ (wm) =f inV and ¢ (zg) = xg-
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IV) Global Darboux theorem

Theorem (Bandyopadhyay-Dacorogna, 2009) Let n =
2m and Q C R"™ be a smooth bounded convex open
set (and v denotes the outside unit normal). Let r > 1

and 0 < a < B < 1. Let f,g € C?“va(ﬁ;/@) N
crtl.p (8(2; /\2) with
dg = df = 0

vANg=vAf on0A.

rank[tg + (1 —t) f] =n in Q and for every t € [0, 1]

Then there exists ¢ € Diff" 1. (ﬁ) satisfying

©*(g)=finQ and ¢ =1id on O
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Remarks (i) If dg = O then necessarily
df = 0.
In fact we always have

rank [dg] = rank [df] .

(ii) If we want ¢ = id on OS2, then necessarily

vANg=vAf on0f.

(iii) The condition
rank [tg 4+ (1 —t) f] =n in Q and for every t € [0, 1]

can be weakened, replacing the linear homotopy by a non-

linear one.
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(iv) If Q is contractible , the theorem is valid. If however
Q is only connected then another necessary condition

comes into play, namely

/Q<f — g;¥)dxr =0 for every 1 € D> ()
where D5 (2) is the set of 2—harmonic field namely

[ eCtidy =0, 6 =0
Dz(Q)_{ and v A1 = 0 on Of2 }

If Q is convex (or more generally star shaped, contractible...)
then

D5 (£2) = {0}.

The dimension of this space is the Betti number

dim D, (Q) = B,,_».
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Theorem (Bandyopadhyay-Dacorogna-Kneuss, 2010)
Let 2 < 2] < n and g € R™. Let w; be the standard
symplectic form of rankw; = 2|

[
g=wj) = Z dz® 1 A dz?
1=1
(when 21 = 2 < n = 3, then g = dz' A dz?).

let r > 1and 0 < a < 1. Let f € C"® be a closed
(i.e. df = dw; = 0) 2—form such that

rank f = rankw; = 2[ in a neigbourhood of z.

Then there exist a neighbourhood V of xg and ¢ €&
Diff">*(V'; R™) such that

e (w) =f inV and ¢(xg) =g



V1) The case of (n — 1) —forms

Theorem (Bandyopadhyay-Dacorogna-Kneuss, 2010)
Let » > 1 be integers, 0 < @ < 1 and zg € R". Let
f,g € C"% closed (n — 1) —forms satisfying

rank f (zg) = rankg (zg) =n —1

or equivalently

f(xo) #0 and g (zq) # 0.
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V1) The case of (n — 1) —forms

Theorem (Bandyopadhyay-Dacorogna-Kneuss, 2010)
Let » > 1 be integers, 0 < @ < 1 and zg € R". Let
f,g € C"% closed (n — 1) —forms satisfying

f(z0) #0 and g (zg) # 0.

Then there exists ¢ € Diff"»® such that, in a neighbour-
hood of zg,

¢*(g)=[f and ¢ (x0) =x0.

Corollary (B-D-K, 2010) Let » > 1 be an integer and
0 < a<1landzg € R Let f € C" vector field
satisfying, in a neighbourhood of xq,

f(xg) #0 and divf =0.



V1) The case of (n — 1) —forms

Theorem (Bandyopadhyay-Dacorogna-Kneuss, 2010)
Let » > 1 be integers, 0 < a < 1 and zg € R"™. Let
f,g € C"% closed (n — 1) —forms satisfying

f(x0) #0 and g(zg) # 0.

Then there exists ¢ € Diff">® such that, in a neighbour-
hood of xq,

v (g) = f and @ (x0) = x0.

Corollary (B-D-K, 2010+Barbarosie) Let » > 1 be
an integer and 0 < a < 1 and zg € R". Let f € O™
vector field satisfying, in a neighbourhood of g,

f(xg) #0 and divf =0.

Then there exists ¢ € Diff"™"® such that, in a neighbour-
hood of zg,

f:*(Vgpl/\---/\Vgon_l) and ¢ (xg) = zg.
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VIl) The case of k—forms when 3 < k <n —2

The problem is more difficult and there the rank is not
the only invariant and we have results only for special
forms.

For example those forms that are product of 1 and 2
forms of the type

f=fIN-ANfiNai A Aam
where

Ji, 5 1

are closed 2—forms and

a]_’---’a/m

are closed 1—forms.

Note that f isa k = (2 + m) —form.
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VIIl) Ideas of the proof
1) The flow method (Moser 1965)

Look for a solution of ™ (g) = f as the flow associated
to an appropriate vector field u;, namely

{ %gpt (x) = ur (v (), t €[0,1]

vo (z) = .

The solution at time t = 1, namely ¢ satisfies
»1(9) = f.

Write

ft=tg+(1—-1t)f

and solve (by Poincaré lemma) the underdetermined prob-
lem

dv=f—g
and recover .+ through the overdetermined algebraic re-
lation

w1 fr = w.



II) The fixed point method
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II) The fixed point method

Look for a solution of ¢©*(g) = f as a perturbation of
the identity, namely

p(r) =z +u(z).

Apply Banach fixed point theorem under a smallness as-

sumption on

1f = gllco.a -

Then iterate in order to remove the smallness assumption.

This requires very fine properties of Hélder continuous

functions.



