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Questions

1) Local existence

2) Global existence

3) Regularity

4) Dirichlet (or Cauchy) data

.....
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'� (!m) = f in V and ' (x0) = x0 :
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Posterior contributions: Burago-Kleiner (1998), Cupini-
Dacorogna-Kneuss (2009), Mc Mullen (1998), Rivière-Ye
(1996) and Ye (1994).

1) Burago-Kleiner and Mc Mullen provided an example
of f 2 C0 such that there exist no ' 2 Di�1 satisfying

detr' (x) = f (x) :

2) Cupini-Dacorogna-Kneuss have studied the degenerate
case where f is allowed to change sign (of course, in this
case, the map cannot be a di¤eomorphism).
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df = 0:

In fact we always have

rank [dg] = rank [df ] :

(ii) If we want ' = id on @
; then necessarily

� ^ g = � ^ f on @
:

(iii) The condition

rank [tg + (1� t) f ] = n in 
 and for every t 2 [0; 1]

can be weakened, replacing the linear homotopy by a non-
linear one.
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hf � g; i dx = 0 for every  2 D2 (
)

where D2 (
) is the set of 2�harmonic �eld namely

D2 (
) =
(
 2 C1 : d = 0; � = 0
and � ^  = 0 on @


)
:

If
 is convex (or more generally star shaped, contractible...)
then

D2 (
) = f0g :

The dimension of this space is the Betti number

dimD2 (
) = Bn�2 :
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hood of x0 ;

'� (g) = f and ' (x0) = x0 :

Corollary (B-D-K, 2010+Barbarosie) Let r � 1 be
an integer and 0 < � < 1 and x0 2 Rn: Let f 2 Cr;�
vector �eld satisfying, in a neighbourhood of x0 ;

f (x0) 6= 0 and div f = 0:

Then there exists ' 2 Di�r;� such that, in a neighbour-
hood of x0 ;

f = �
�
r'1 ^ � � � ^ r'n�1

�
and ' (x0) = x0 :
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VII) The case of k�forms when 3 � k � n� 2

The problem is more di¢ cult and there the rank is not
the only invariant and we have results only for special
forms.

For example those forms that are product of 1 and 2
forms of the type

f = f1 ^ � � � ^ fl ^ a1 ^ � � � ^ am

where

f1 ; � � � ; fl
are closed 2�forms and

a1 ; � � � ; am

are closed 1�forms.

Note that f is a k = (2l +m)�form.
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VIII) Ideas of the proof

I) The �ow method (Moser 1965)

Look for a solution of '� (g) = f as the �ow associated
to an appropriate vector �eld ut ; namely(

d
dt't (x) = ut ('t (x)) ; t 2 [0; 1]

'0 (x) = x:

The solution at time t = 1; namely '1 satis�es

'�1 (g) = f:

Write

ft = tg + (1� t) f

and solve (by Poincaré lemma) the underdetermined prob-
lem

d! = f � g

and recover ut through the overdetermined algebraic re-
lation

ut y ft = !:
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II) The �xed point method

Look for a solution of '� (g) = f as a perturbation of
the identity, namely

' (x) = x+ u (x) :

Apply Banach �xed point theorem under a smallness as-
sumption on

kf � gkC0;� :

Then iterate in order to remove the smallness assumption.

This requires very �ne properties of Hölder continuous
functions.


